2-local isometries on differentiable function spaces

Ya-Shu Wang

National Chung-Hsing University

joint work with L. Li, C.-W. Liu and L. Wang

2021 TMS Annual Meeting

★ ∃ > < ∃ >

The classical Banach-Stone Theorem

Let X, Y be compact Hausdorff spaces and $T : C(X) \rightarrow C(Y)$ be a surjective linear isometry, then there exist a homeomorphism

 $\varphi: Y \to X$ and $h \in C(Y)$

such that

$$|h(y)| = 1$$
 for all $y \in Y$,

and

 $(Tf)(y) = h(y)f(\varphi(y))$ for all $f \in C(X)$ and $y \in Y$.

many extensions to a variety of different settings

ヘロン 人間 とくほ とくほ とう

The classical Banach-Stone Theorem

Let X, Y be compact Hausdorff spaces and $T : C(X) \rightarrow C(Y)$ be a surjective linear isometry, then there exist a homeomorphism

 $\varphi: Y \to X$ and $h \in C(Y)$

such that

$$|h(y)| = 1$$
 for all $y \in Y$,

and

 $(Tf)(y) = h(y)f(\varphi(y))$ for all $f \in C(X)$ and $y \in Y$.

many extensions to a variety of different settings

ヘロン 人間 とくほ とくほ とう

X, *Y*: Banach spaces $S \subset L(X, Y)$, all linear maps from *X* to *Y*.

A linear mapping $T : X \to Y$ is a local S map if for each $x \in X$, there exists $T_x \in S$, depending on x satisfying

$$T(x)=T_x(x).$$

Kadison, 1990

R: von Neumann algebra

Then every norm-continuous local derivation $T : \mathcal{R} \to \mathcal{R}$ is a derivation.

many extensions to a variety of different settings

X, *Y*: Banach spaces $S \subset L(X, Y)$, all linear maps from *X* to *Y*.

A linear mapping $T : X \to Y$ is a local S map if for each $x \in X$, there exists $T_x \in S$, depending on x satisfying

$$T(x)=T_x(x).$$

Kadison, 1990

 \mathcal{R} : von Neumann algebra

Then every norm-continuous local derivation $T : \mathcal{R} \to \mathcal{R}$ is a derivation.

many extensions to a variety of different settings

X, *Y*: Banach spaces $S \subset L(X, Y)$, all linear maps from *X* to *Y*.

A linear mapping $T : X \to Y$ is a local S map if for each $x \in X$, there exists $T_x \in S$, depending on x satisfying

$$T(x)=T_x(x).$$

Kadison, 1990

 \mathcal{R} : von Neumann algebra

Then every norm-continuous local derivation $T : \mathcal{R} \to \mathcal{R}$ is a derivation.

many extensions to a variety of different settings

E, *F*: Banach spaces $S \subset L(E, F)$, all linear maps from *E* to *F*

A (non-necessarily linear nor continuous) mapping $\Delta : E \to F$ is a 2-local *S*-map if for any $x, y \in E$, there exists $T_{x,y} \in S$, depending on *x* and *y* such that

$$\Delta(x) = T_{x,y}(x)$$
 and $\Delta(y) = T_{x,y}(y)$.

個 とく ヨ とく ヨ とう

P. Šemrl, 1997

H: infinite-dimensional separable Hilbert space B(H): algebra of all linear bounded operators on H

Then every 2-local automorphism $\Delta : B(H) \rightarrow B(H)$ is an automorphism.

P. Šemrl, 1997

H: infinite-dimensional separable Hilbert space B(H): algebra of all linear bounded operators on H

Then every 2-local derivation $\Delta : B(H) \rightarrow B(H)$ is a derivation.

ヘロト 人間 ト ヘヨト ヘヨト

P. Šemrl, 1997

H: infinite-dimensional separable Hilbert space B(H): algebra of all linear bounded operators on H

Then every 2-local automorphism $\Delta : B(H) \rightarrow B(H)$ is an automorphism.

P. Šemrl, 1997

H: infinite-dimensional separable Hilbert space B(H): algebra of all linear bounded operators on H

Then every 2-local derivation $\Delta : B(H) \rightarrow B(H)$ is a derivation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

M. Győry, 2001

X: first countable σ -compact Hausdorff space

Then every 2-local isometry $\Delta : C_0(X) \to C_0(X)$ is a surjective linear isometry.

O. Hatori, T. Miura, H. Oka and H. Takagi, 2007

A: uniform algebra

Then every 2-local automorphism Δ on A is an isometrical isomorphism from A onto $\Delta(A)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

M. Győry, 2001

X: first countable σ -compact Hausdorff space

Then every 2-local isometry $\Delta : C_0(X) \to C_0(X)$ is a surjective linear isometry.

O. Hatori, T. Miura, H. Oka and H. Takagi, 2007

A: uniform algebra

Then every 2-local automorphism Δ on *A* is an isometrical isomorphism from *A* onto $\Delta(A)$.

ヘロン 人間 とくほ とくほ とう

1

Let $E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$ and

 $\Delta(al+bE_{12}+cE_{13})=al+bE_{12}+\sqrt[3]{b^3+c^3}E_{13}.$

Then Δ is nonlinear 2-local automorphism. Let $A = a_1 I + b_1 E_{12} + c_1 E_{13}$ and $B = a_2 I + b_2 E_{12} + c_2 E_{13}$. Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

ヘロン 人間 とくほ とくほ とう

Let $E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$ and

 $\Delta(al+bE_{12}+cE_{13})=al+bE_{12}+\sqrt[3]{b^3+c^3}E_{13}.$

Then Δ is nonlinear 2-local automorphism. Let $A = a_1 I + b_1 E_{12} + c_1 E_{13}$ and $B = a_2 I + b_2 E_{12} + c_2 E_{13}$. Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

ヘロン 人間 とくほ とくほ とう

Let $E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$ and

 $\Delta(al + bE_{12} + cE_{13}) = al + bE_{12} + \sqrt[3]{b^3} + c^3 E_{13}.$

Then Δ is nonlinear 2-local automorphism. Let $A = a_1 I + b_1 E_{12} + c_1 E_{13}$ and $B = a_2 I + b_2 E_{12} + c_2 E_{13}$. Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

ヘロト ヘアト ヘビト ヘビト

Let $E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$ and

$\Delta(aI + bE_{12} + cE_{13}) = aI + bE_{12} + \sqrt[3]{b^3} + c^3 E_{13}.$

Then Δ is nonlinear 2-local automorphism. Let $A = a_1 I + b_1 E_{12} + c_1 E_{13}$ and $B = a_2 I + b_2 E_{12} + c_2 E_{13}$. Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

ヘロン 人間 とくほ とくほ とう

Let
$$E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$$
 and
 $\Delta(aI + bE_{12} + cE_{13}) = aI + bE_{12} + \sqrt[3]{b^3 + c^3} E_{13}.$
Then Δ is nonlinear 2-local automorphism. Let
 $A = a_1I + b_1E_{12} + c_1E_{13}$ and $B = a_2I + b_2E_{12} + c_2E_{13}.$
Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Let
$$E = span\{I, E_{12}, E_{13}\} \subset M_3(\mathbb{R})$$
 and
 $\Delta(aI + bE_{12} + cE_{13}) = aI + bE_{12} + \sqrt[3]{b^3 + c^3} E_{13}.$

Then Δ is nonlinear 2-local automorphism. Let $A = a_1I + b_1E_{12} + c_1E_{13}$ and $B = a_2I + b_2E_{12} + c_2E_{13}$. Note that $\exists q, s \in \mathbb{R}$ s.t.

$$\left(\begin{array}{cc}b_1 & c_1\\b_2 & c_2\end{array}\right)\left(\begin{array}{c}q\\s\end{array}\right) = \left(\begin{array}{c}\sqrt[3]{b_1^3 + c_1^3}\\\sqrt[3]{b_2^3 + c_2^3}\end{array}\right)$$

Then $T_{A,B}(al + bE_{12} + cE_{13}) = al + bE_{12} + (bq + cs)E_{13}$ is an automorphism on *E* and $\Delta(A) = T_{A,B}(A)$, $\Delta(B) = T_{A,B}(B)$.

< 回 > < 回 > < 回 > -

Q: Is any 2-local S-map $\Delta: E \to E$ surjective? No

Győry, 2001

X: uncountable space with discrete topology *Y*: proper subset of *X* for which there is a bijection $\psi : X \to Y$ Define the map $\Delta : C_0(X) \to C_0(X)$ by

$$\Delta(f)(x) = \begin{cases} f(\psi^{-1}(x)) & \text{if } x \in Y \\ 0 & \text{if } x \in X \setminus Y. \end{cases}$$

Then Δ is a linear 2-local isometry which is not surjective.

 $f \in C_0(X)$ iff $\exists x_n \text{ s.t. } f(x_n) \to 0$ and $\text{supp} f \subseteq \{x_n\}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Q: Is any 2-local S-map $\Delta : E \to E$ surjective? No.

Győry, 2001

X: uncountable space with discrete topology *Y*: proper subset of *X* for which there is a bijection $\psi : X \to Y$ Define the map $\Delta : C_0(X) \to C_0(X)$ by

$$\Delta(f)(x) = \begin{cases} f(\psi^{-1}(x)) & \text{if } x \in Y \\ 0 & \text{if } x \in X \setminus Y. \end{cases}$$

Then Δ is a linear 2-local isometry which is not surjective.

 $f \in C_0(X)$ iff $\exists x_n \text{ s.t. } f(x_n) \to 0$ and $\operatorname{supp} f \subseteq \{x_n\}$

Q: Is any 2-local S-map $\Delta : E \to E$ surjective? No.

Győry, 2001

- X: uncountable space with discrete topology
- *Y*: proper subset of *X* for which there is a bijection $\psi : X \to Y$

Define the map $\Delta : C_0(X) \to C_0(X)$ by

$$\Delta(f)(x) = egin{cases} f(\psi^{-1}(x)) & ext{if } x \in Y \ 0 & ext{if } x \in X \setminus Y. \end{cases}$$

Then Δ is a linear 2-local isometry which is not surjective.

 $f \in C_0(X)$ iff $\exists x_n \text{ s.t. } f(x_n) \to 0 \text{ and } \text{supp} f \subseteq \{x_n\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $C^{1}([0, 1])$: continuously diff functions on [0, 1], with the norm

$$||f|| = \sup_{x \in [0,1]} \{|f(x)| + |f'(x)|\}$$

Q: 2-local isometry $\Delta: C^1([0, 1]) \rightarrow C^1([0, 1])$ linear and surjective ?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $C^{1}([0, 1])$: continuously diff functions on [0, 1], with the norm

$$||f|| = \sup_{x \in [0,1]} \{|f(x)| + |f'(x)|\}$$

Q: 2-local isometry $\Delta: C^1([0, 1]) \rightarrow C^1([0, 1])$ linear and surjective ?

同 ト イヨ ト イヨ ト ヨ うくで

M. Hosseini, 2017

 $C^{(n)}([0,1])$: *n*-times cont diff on [0,1] with the norm

 $\|f\|_n = \max\{|f(0)|, |f'(0)|, \dots, |f^{(n-1)}(0)|, \|f^{(n)}\|_{\infty}\}$

 $T : C^{(n)}([0,1]) \to C^{(n)}([0,1])$ 2-local real-linear isometry, i.e., for $f, g \in C^{(n)}([0,1]), \exists T_{f,g} : C^{(n)}([0,1]) \to C^{(n)}([0,1])$ onto real-linear isometry, s.t. $T(f) = T_{f,g}(f)$ and $T(g) = T_{f,g}(g)$.

Then T is a surjective real-linear isometry.

H. Koshimizu, T. Miura, 2021

 $C^{1}([0, 1])$: cont diff on [0, 1] with the norm

 $\|f\| = |f(0)| + \|f'\|_{\infty}$

 $T: C^1([0,1]) \rightarrow C^1([0,1])$ 2-local real-linear isometry

Then T is a surjective real-linear isometry.

M. Hosseini, 2017

 $C^{(n)}([0,1])$: *n*-times cont diff on [0,1] with the norm

 $||f||_n = \max\{|f(0)|, |f'(0)|, \dots, |f^{(n-1)}(0)|, ||f^{(n)}||_\infty\}$

 $T: C^{(n)}([0,1]) \to C^{(n)}([0,1])$ 2-local real-linear isometry, i.e., for $f, g \in C^{(n)}([0,1]), \exists T_{f,g}: C^{(n)}([0,1]) \to C^{(n)}([0,1])$ onto real-linear isometry, s.t. $T(f) = T_{f,g}(f)$ and $T(g) = T_{f,g}(g)$.

Then T is a surjective real-linear isometry.

H. Koshimizu, T. Miura, 2021

 $C^{1}([0, 1])$: cont diff on [0, 1] with the norm

 $\|f\| = |f(0)| + \|f'\|_{\infty}$

 $\mathcal{T}: C^1([0,1]) \rightarrow C^1([0,1])$ 2-local real-linear isometry

Then T is a surjective real-linear isometry.

Cambern, 1964

 $C^{1}([0, 1])$ with the norm $||f|| = \sup_{x \in [0, 1]} \{|f(x)| + |f'(x)|\}$ $T : C^{1}([0, 1]) \rightarrow C^{1}([0, 1])$ linear surjective isometry Then $\exists \varphi : [0, 1] \rightarrow [0, 1]$ with $\varphi(x) = x$ or 1 - x, and a constant $e^{i\lambda}$, $\lambda \in [-\pi, \pi]$, s.t. $T(f)(y) = e^{i\lambda}f(\varphi(y)), \quad \forall y \in [0, 1].$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Kowalski-Słodkowski theorem, 1980

A: complex Banach algebra; $\Delta : A \rightarrow \mathbb{C}$ mapping satisfying

$$\Delta(0) = 0$$
 and $\Delta(x) - \Delta(y) \in \sigma(x - y) \ \forall x, y \in A$

Then Δ is linear and multiplicative.

$\sigma(a)$: the spectrum of $a \in A$

spherical variant of the Kowalski-Słodkowski theorem

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

$$\Delta$$
 is 1-homogeneous;

(a) $\Delta(x) - \Delta(y) \in \mathbb{T} \ \sigma(x - y)$, for every $x, y \in A$.

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

 $\Delta : X \to Y$ between complex Banach spaces is 1-homogeneous if $\Delta(\lambda x) = \lambda \Delta(x)$, for every $x \in X$, $\lambda \in \mathbb{C}$. Kowalski-Słodkowski theorem, 1980

A: complex Banach algebra; $\Delta : A \rightarrow \mathbb{C}$ mapping satisfying

$$\Delta(0) = 0$$
 and $\Delta(x) - \Delta(y) \in \sigma(x - y) \ \forall x, y \in A$

Then Δ is linear and multiplicative.

 $\sigma(a)$: the spectrum of $a \in A$

spherical variant of the Kowalski-Słodkowski theorem

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

 $\Delta : X \to Y$ between complex Banach spaces is 1-*homogeneous* if $\Delta(\lambda x) = \lambda \Delta(x)$, for every $x \in X$, $\lambda \in \mathbb{C}$.

2-local isometry $\Delta:(\textit{C}^1[0,1],\|\cdot\|)\rightarrow(\textit{C}^1[0,1],\|\cdot\|)$ is linear

• $T: C^{(1)}[0,1] \to C^{(1)}[0,1]$ onto linear, then $\exists \tau \in \mathbb{T}$, $\varphi: [0,1] \to [0,1]$ bij. s.t.

 $T(f)(s) = \tau f(\varphi(s)) \quad \forall f \in C^1([0,1]) s \in [0,1]$

• $s \in [0, 1], f, g \in C^1, \exists \tau_{f,g,s} \in \mathbb{T}, \varphi_{f,g,s} : [0, 1] \to [0, 1] \text{ s.t.}$ $\delta_s \circ \Delta(f) = \delta_s \circ T_{f,g,s}(f) = \tau_{f,g,s} f(\varphi_{f,g,s}(s))$ $\delta_s \circ \Delta(g) = \delta_s \circ T_{f,g,s}(g) = \tau_{f,g,s} g(\varphi_{f,g,s}(s)).$

δ_s ∘ Δ(λf) = λδ_s ∘ Δ(f) and δ_s ∘ Δ is 1-homogeneous
 δ_s ∘ Δ(f) - δ_s ∘ Δ(g) = τ_{f,g,s}(s)(f - g)(φ_{f,g,s}) ∈ T σ(f - g)

2-local isometry $\Delta: (\textit{C}^1[0,1],\|\cdot\|) \rightarrow (\textit{C}^1[0,1],\|\cdot\|)$ is linear

• $T: C^{(1)}[0,1] \to C^{(1)}[0,1]$ onto linear, then $\exists \tau \in \mathbb{T}$, $\varphi: [0,1] \to [0,1]$ bij. s.t.

 $T(f)(s) = \tau f(\varphi(s)) \quad \forall f \in C^1([0,1]) s \in [0,1]$

• $s \in [0, 1], f, g \in C^1, \exists \tau_{f,g,s} \in \mathbb{T}, \varphi_{f,g,s} : [0, 1] \to [0, 1] \text{ s.t.}$ $\delta_s \circ \Delta(f) = \delta_s \circ T_{f,g,s}(f) = \tau_{f,g,s} f(\varphi_{f,g,s}(s))$ $\delta_s \circ \Delta(g) = \delta_s \circ T_{f,g,s}(g) = \tau_{f,g,s} g(\varphi_{f,g,s}(s)).$

δ_s ∘ Δ(λf) = λδ_s ∘ Δ(f) and δ_s ∘ Δ is 1-homogeneous
 δ_s ∘ Δ(f) - δ_s ∘ Δ(g) = τ_{f,a,s}(s)(f - g)(φ_{f,a,s}) ∈ T σ(f - g)

2-local isometry $\Delta: (\textit{C}^1[0,1],\|\cdot\|) \rightarrow (\textit{C}^1[0,1],\|\cdot\|)$ is linear

• $T: C^{(1)}[0,1] \to C^{(1)}[0,1]$ onto linear, then $\exists \tau \in \mathbb{T}$, $\varphi: [0,1] \to [0,1]$ bij. s.t.

$$T(f)(\boldsymbol{s}) = \tau f(\varphi(\boldsymbol{s})) \quad \forall f \in C^{1}([0,1]) \, \boldsymbol{s} \in [0,1]$$

•
$$s \in [0, 1], f, g \in C^1, \exists \tau_{f,g,s} \in \mathbb{T}, \varphi_{f,g,s} : [0, 1] \rightarrow [0, 1] \text{ s.t.}$$

 $\delta_s \circ \Delta(f) = \delta_s \circ T_{f,g,s}(f) = \tau_{f,g,s} f(\varphi_{f,g,s}(s))$
 $\delta_s \circ \Delta(g) = \delta_s \circ T_{f,g,s}(g) = \tau_{f,g,s} g(\varphi_{f,g,s}(s)).$

• $\delta_s \circ \Delta(\lambda f) = \lambda \delta_s \circ \Delta(f)$ and $\delta_s \circ \Delta$ is 1-homogeneous • $\delta_s \circ \Delta(f) - \delta_s \circ \Delta(g) = \tau_{f,g,s}(s)(f-g)(\varphi_{f,g,s}) \in \mathbb{T} \sigma(f-g)$

2-local isometry $\Delta: (\textit{C}^1[0,1],\|\cdot\|) \rightarrow (\textit{C}^1[0,1],\|\cdot\|)$ is linear

• $T: C^{(1)}[0,1] \to C^{(1)}[0,1]$ onto linear, then $\exists \tau \in \mathbb{T}$, $\varphi: [0,1] \to [0,1]$ bij. s.t.

$$T(f)(\boldsymbol{s}) = \tau f(\varphi(\boldsymbol{s})) \quad \forall f \in C^{1}([0,1]) \, \boldsymbol{s} \in [0,1]$$

•
$$s \in [0, 1], f, g \in C^1, \exists \tau_{f,g,s} \in \mathbb{T}, \varphi_{f,g,s} : [0, 1] \rightarrow [0, 1] \text{ s.t.}$$

 $\delta_s \circ \Delta(f) = \delta_s \circ T_{f,g,s}(f) = \tau_{f,g,s} f(\varphi_{f,g,s}(s))$
 $\delta_s \circ \Delta(g) = \delta_s \circ T_{f,g,s}(g) = \tau_{f,g,s} g(\varphi_{f,g,s}(s)).$

δ_s ∘ Δ(λf) = λδ_s ∘ Δ(f) and δ_s ∘ Δ is 1-homogeneous
 δ_s ∘ Δ(f) − δ_s ∘ Δ(g) = τ_{f,g,s}(s)(f − g)(φ_{f,g,s}) ∈ T σ(f − g)

2-local isometry $\Delta: (\textit{C}^1[0,1],\|\cdot\|) \to (\textit{C}^1[0,1],\|\cdot\|)$ is linear

• $T: C^{(1)}[0,1] \to C^{(1)}[0,1]$ onto linear, then $\exists \tau \in \mathbb{T}$, $\varphi: [0,1] \to [0,1]$ bij. s.t.

$$T(f)(\boldsymbol{s}) = \tau f(\varphi(\boldsymbol{s})) \quad \forall f \in \boldsymbol{C}^{1}([0,1]) \, \boldsymbol{s} \in [0,1]$$

•
$$s \in [0, 1], f, g \in C^1, \exists \tau_{f,g,s} \in \mathbb{T}, \varphi_{f,g,s} : [0, 1] \rightarrow [0, 1] \text{ s.t.}$$

 $\delta_s \circ \Delta(f) = \delta_s \circ T_{f,g,s}(f) = \tau_{f,g,s} f(\varphi_{f,g,s}(s))$
 $\delta_s \circ \Delta(g) = \delta_s \circ T_{f,g,s}(g) = \tau_{f,g,s} g(\varphi_{f,g,s}(s)).$

• $\delta_{s} \circ \Delta(\lambda f) = \lambda \delta_{s} \circ \Delta(f)$ and $\delta_{s} \circ \Delta$ is 1-homogeneous • $\delta_{s} \circ \Delta(f) - \delta_{s} \circ \Delta(g) = \tau_{f,g,s}(s)(f-g)(\varphi_{f,g,s}) \in \mathbb{T} \sigma(f-g)$

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

 Δ is 1-homogeneous;

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

• $\delta_s \circ \Delta : A \to \mathbb{C}$ is linear $\forall s \in [0, 1]$, and Δ is linear

Theorem

2-local isometry $\Delta : (C^{1}[0,1], \|\cdot\|) \to (C^{1}[0,1], \|\cdot\|)$ is linear

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

a) Δ is 1-homogeneous;

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

• $\delta_s \circ \Delta : A \to \mathbb{C}$ is linear $\forall s \in [0, 1]$, and Δ is linear

Theorem

2-local isometry $\Delta : (C^1[0,1], \|\cdot\|) \rightarrow (C^1[0,1], \|\cdot\|)$ is linear

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

 Δ is 1-homogeneous;

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

• $\delta_s \circ \Delta : A \to \mathbb{C}$ is linear $\forall s \in [0, 1]$, and Δ is linear

Theorem

2-local isometry $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is linear

・ロ・ ・ 同・ ・ ヨ・

A: unital complex Banach algebra; $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

 Δ is 1-homogeneous;

Then Δ is linear, and $\exists \lambda_0 \in \mathbb{T}$ s.t. $\lambda_0 \Delta$ is multiplicative.

• $\delta_{s} \circ \Delta : A \to \mathbb{C}$ is linear $\forall s \in [0, 1]$, and Δ is linear

Theorem

2-local isometry $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is linear

ヘロン 人間 とくほ とくほ とう

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \, \mathbf{y} \in \mathbf{X}.$

• $f, g \in C^1$, $\exists \lambda_{f,g} \in [-\pi, \pi]$, $\varphi_{f,g} : [0, 1] \rightarrow [0, 1]$ bij s.t.

 $\Delta(f)(s) = \mathcal{T}_{f,g}(f)(s) = e^{i\lambda_{f,g}}f(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$

 $\Delta(g)(s) = \mathcal{T}_{f,g}(g)(s) = e^{i\lambda_{f,g}}g(arphi_{f,g}(s)) \hspace{0.2cm} orall s \in [0,1]$

- $A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$
- $\mathcal{A}_{x} = \{ \mathcal{A}_{x,f} \mid f \in \mathcal{C}^{1} \}, \qquad \mathcal{A}_{x} = \bigcap \mathcal{A}_{x} \neq \emptyset,$
- $B_x = \{y \in [0,1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y,v) \in A_x\}, B_x \cap B_y = \emptyset$
- $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in C^1, \ \mathbf{y} \in X.$$

•
$$f, g \in C^1, \exists \lambda_{f,g} \in [-\pi, \pi], \varphi_{f,g} : [0, 1] \to [0, 1]$$
 bij s.t.

$$\Delta(f)(\boldsymbol{s}) = T_{f,g}(f)(\boldsymbol{s}) = \boldsymbol{e}^{i\lambda_{f,g}}f(\varphi_{f,g}(\boldsymbol{s})) \quad \forall \boldsymbol{s} \in [0,1]$$

 $\Delta(g)(s) = T_{f,g}(g)(s) = e^{i\lambda_{f,g}}g(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$

- $A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$
- $\mathcal{A}_x = \{ \mathcal{A}_{x,f} \mid f \in \mathbb{C}^1 \}, \qquad \mathcal{A}_x = \bigcap \mathcal{A}_x \neq \emptyset,$
- $B_x = \{y \in [0,1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y,v) \in A_x\}, B_x \cap B_y = \emptyset$
- $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in C^1, \ \mathbf{y} \in X.$$

•
$$f, g \in C^1, \exists \lambda_{f,g} \in [-\pi, \pi], \varphi_{f,g} : [0, 1] \to [0, 1]$$
 bij s.t.

$$\Delta(f)(s) = T_{f,g}(f)(s) = e^{i\lambda_{f,g}}f(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$$

$$\Delta(g)(s) = T_{f,g}(g)(s) = e^{i\lambda_{f,g}}g(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$$

• $A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$

- $\mathcal{A}_{x} = \{ \mathcal{A}_{x,f} \mid f \in \mathbb{C}^{1} \}, \qquad \mathcal{A}_{x} = \bigcap \mathcal{A}_{x} \neq \emptyset,$
- $B_x = \{y \in [0, 1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y, v) \in A_x\}, B_x \cap B_y = \emptyset$
- $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \ \mathbf{y} \in \mathbf{X}.$$

•
$$f, g \in C^1$$
, $\exists \lambda_{f,g} \in [-\pi, \pi]$, $\varphi_{f,g} : [0, 1] \rightarrow [0, 1]$ bij s.t.

$$\Delta(f)(s) = T_{f,g}(f)(s) = e^{i\lambda_{f,g}}f(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$$

$$\Delta(g)(s) = \mathit{T}_{\mathit{f},g}(g)(s) = e^{i\lambda_{\mathit{f},g}}g(arphi_{\mathit{f},g}(s)) \hspace{1em} orall s \in [0,1]$$

- $A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$
- $\mathcal{A}_x = \{ \mathcal{A}_{x,f} \mid f \in \mathbb{C}^1 \}, \qquad \mathcal{A}_x = \bigcap \mathcal{A}_x \neq \emptyset,$
- $B_x = \{y \in [0, 1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y, v) \in A_x\}, B_x \cap B_y = \emptyset$
- $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \, \mathbf{y} \in \mathbf{X}.$$

•
$$f, g \in C^1, \exists \lambda_{f,g} \in [-\pi, \pi], \varphi_{f,g} : [0, 1] \to [0, 1]$$
 bij s.t.

$$\Delta(f)(s) = T_{f,g}(f)(s) = e^{i\lambda_{f,g}}f(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$$

$$\Delta(g)(s) = \mathit{T}_{\mathit{f},g}(g)(s) = e^{i\lambda_{\mathit{f},g}}g(arphi_{\mathit{f},g}(s)) \hspace{1em} orall s \in [0,1]$$

- $A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$
- $\mathcal{A}_x = \{ \mathcal{A}_{x,f} \mid f \in C^1 \}, \qquad \mathcal{A}_x = \bigcap \mathcal{A}_x \neq \emptyset,$
- $B_x = \{y \in [0,1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y,v) \in A_x\}, B_x \cap B_y = \emptyset$
- $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

 $\Delta : (C^1[0,1], \|\cdot\|) \to (C^1[0,1], \|\cdot\|)$ is a 2-local isometry. Then $\exists X \subseteq [0,1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0,1]$ onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \ \mathbf{y} \in \mathbf{X}.$$

•
$$f, g \in C^1, \exists \lambda_{f,g} \in [-\pi, \pi], \varphi_{f,g} : [0, 1] \to [0, 1]$$
 bij s.t.

$$\Delta(f)(s) = T_{f,g}(f)(s) = e^{i\lambda_{f,g}}f(\varphi_{f,g}(s)) \quad \forall s \in [0,1]$$

$$\Delta(g)(s) = \mathit{T}_{\mathit{f},g}(g)(s) = e^{i\lambda_{\mathit{f},g}}g(arphi_{\mathit{f},g}(s)) \hspace{1em} orall s \in [0,1]$$

•
$$A_{x,f} = \{(y,v) \in [0,1] \times \mathbb{T} \mid \Delta(f)(y) = vf(x)\} \neq \emptyset$$

•
$$\mathcal{A}_x = \{ \mathcal{A}_{x,f} \mid f \in C^1 \}, \qquad \mathcal{A}_x = \bigcap \mathcal{A}_x \neq \emptyset,$$

•
$$B_x = \{y \in [0,1] \mid \exists v \in \mathbb{T} \text{ s.t. } (y,v) \in A_x\}, B_x \cap B_y = \emptyset$$

• $X = \bigcup_{x \in [0,1]} B_x$, $\psi(y)$ the unique point of [0, 1] for which $y \in B_{\psi(y)}$.

2-local isometry $\Delta: (C^1[0,1],\|\cdot\|) \to (C^1[0,1],\|\cdot\|)$ is a surjective linear isometry

• $\exists X \subseteq [0, 1], \mu : X \to \mathbb{C}$ cont with $|\mu| = 1$ and $\psi : X \to [0, 1]$ onto cont s.t.

 $\Delta(f)(y) = \mu(y)f(\psi(y)) \quad \forall f \in C^1, \ y \in X.$

- μ is a constant function on X
- X = [0, 1] and $\psi(y) = y$ or 1 y

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

2-local isometry $\Delta: (\mathit{C}^1[0,1],\|\cdot\|) \to (\mathit{C}^1[0,1],\|\cdot\|)$ is a surjective linear isometry

∃X ⊆ [0, 1], µ : X → C cont with |µ| = 1 and ψ : X → [0, 1] onto cont s.t.

 $\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \, \mathbf{y} \in \mathbf{X}.$

• μ is a constant function on X

• X = [0, 1] and $\psi(y) = y$ or 1 - y

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

2-local isometry $\Delta: (\mathit{C}^1[0,1],\|\cdot\|) \to (\mathit{C}^1[0,1],\|\cdot\|)$ is a surjective linear isometry

∃X ⊆ [0, 1], µ : X → C cont with |µ| = 1 and ψ : X → [0, 1] onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \, \mathbf{y} \in \mathbf{X}.$$

- μ is a constant function on X
- X = [0, 1] and $\psi(y) = y$ or 1 y

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

2-local isometry $\Delta: (C^1[0,1],\|\cdot\|) \to (C^1[0,1],\|\cdot\|)$ is a surjective linear isometry

∃X ⊆ [0, 1], µ : X → C cont with |µ| = 1 and ψ : X → [0, 1] onto cont s.t.

$$\Delta(f)(\mathbf{y}) = \mu(\mathbf{y})f(\psi(\mathbf{y})) \quad \forall f \in \mathbf{C}^1, \, \mathbf{y} \in \mathbf{X}.$$

- µ is a constant function on X
- X = [0, 1] and $\psi(y) = y$ or 1 y

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ ● ● ● ●

Thanks for your attention !!

Ya-Shu Wang 2-local isometries on differentiable function spaces

★ E → < E →</p>